Mechanical unloading improves intracellular Ca2+ regulation in rats with doxorubicin-induced cardiomyopathy.
نویسندگان
چکیده
OBJECTIVES We sought to assess whether mechanical unloading has beneficial effects on cardiomyocytes from doxorubicin-induced cardiomyopathy in rats. BACKGROUND Mechanical unloading by a left ventricular assist device (LVAD) improves the cardiac function of terminal heart failure in humans. However, previous animal studies have failed to demonstrate beneficial effects of mechanical unloading in the myocardium. METHODS The effects of mechanical unloading by heterotopic abdominal heart transplantation were evaluated in the myocardium from doxorubicin-treated rats by analyzing the intracellular free calcium level ([Ca(2+)](i)) and the levels of intracellular Ca(2+)-regulatory proteins. RESULTS In doxorubicin-treated rats, the duration of cell shortening and [Ca(2+)](i) transients in cardiomyocytes was prolonged (432 +/- 28.2% of control in 50% relaxation time; 184 +/- 10.5% of control in [Ca(2+)](i) 50% decay time). Such prolonged time courses significantly recovered after mechanical unloading (114 +/- 10.4% of control in 50% relaxation time; 114 +/- 5.8% of control in 50% decay time). These effects were accompanied by an increase in sarcoplasmic reticulum Ca(2+) ATPase (SERCA2a) protein levels (0.97 +/- 0.05 in unloaded hearts vs. 0.41+/- 0.09 in non-unloaded hearts). The levels of other intracellular Ca(2+)-regulatory proteins (phospholamban and ryanodine receptor) were not altered after mechanical unloading in doxorubicin-treated hearts. These parameters in unloaded hearts without doxorubicin treatment were similar to normal hearts. CONCLUSIONS Mechanical unloading increases functional sarcoplasmic reticulum Ca(2+) ATPase and improves [Ca(2+)](i) handling and contractility in rats with doxorubicin-induced cardiomyopathy. These beneficial effects of mechanical unloading were not observed in normal hearts.
منابع مشابه
Ultrastructural and Echocardiographic Assessment of Chronic Doxorubicin-Induced Cardiotoxicity in Rats
Doxorubicin (DOX) is one of the secondary metabolites of Streptomyces peucetius var. caesius. It is a common and effective chemotherapeutic agent used for the treatment of different diseases, including lymphoma, leukemia, breast cancer, and solid tumors. However, this medicine causes cardiotoxic side effects, which limit its clinical application. The present study examined the cardiomy...
متن کاملP-40: Silymarin Prevents and Protects from the Doxorubicin-induced Oxidative Stress in Testis and Improves Sperm Quality in Rats
Background: Doxorubicin (DOX) as an antracycline is used antineoplastic agents against tumors. Although DOX has been recognized as a potent and effectiveness anticancer compound, there are however plenty of reports indicating its toxicity against the heart, liver and testis, which hampers its clinical use. This study aimed to investigate the preventive and protective effects of Silymarin (SMN) ...
متن کاملMechanical unloading reverses transverse tubule remodelling and normalizes local Ca2+-induced Ca2+release in a rodent model of heart failure
AIMS Ca(2+)-induced Ca(2+) release (CICR) is critical for contraction in cardiomyocytes. The transverse (t)-tubule system guarantees the proximity of the triggers for Ca(2+) release [L-type Ca(2+) channel, dihydropyridine receptors (DHPRs)] and the sarcoplasmic reticulum Ca(2+) release channels [ryanodine receptors (RyRs)]. Transverse tubule disruption occurs early in heart failure (HF). Clinic...
متن کاملA journey in doxorubicin-induced cardiotoxicity with emphasizing on the role of Connexin 43 and Sirtuin-3
Cancer has become a major health problem worldwide. The reported incidence of new cancer cases is estimated at 19.3 million, with a mortality rate of 10 million in the world in 2020. There are some approaches for cancer treatment such as chemotherapy, neoadjuant surgery, hormone therapy, and radiotherapy. Chemotherapy is an aggressive form of chemical drug therapy meant to destroy rapidly growi...
متن کاملBuckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway
Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American College of Cardiology
دوره 44 11 شماره
صفحات -
تاریخ انتشار 2004